Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean.

نویسندگان

  • Jieqing Ping
  • Yunfeng Liu
  • Lianjun Sun
  • Meixia Zhao
  • Yinghui Li
  • Maoyun She
  • Yi Sui
  • Feng Lin
  • Xiaodong Liu
  • Zongxiang Tang
  • Hanh Nguyen
  • Zhixi Tian
  • Lijuan Qiu
  • Randall L Nelson
  • Thomas E Clemente
  • James E Specht
  • Jianxin Ma
چکیده

Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean

It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductiv...

متن کامل

Sequencing and phylogenetic study of APETALA1 homologous gene in garden cress (Lepidium sativum L.)

The flowering process in plants proceeds through the induction of an inflorescence meristem triggered by several pathways. Many of the genes associated with these pathways encode transcription factors of the MADS domain family. The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of flower development. The first step to understand the molecular mechanisms under the function of...

متن کامل

GmAGL1, a MADS-Box Gene from Soybean, Is Involved in Floral Organ Identity and Fruit Dehiscence

MADS-domain proteins are important transcription factors involved in many aspects of plant reproductive development. In this study, a MADS-box gene, Glycine max AGAMOUS-LIKE1 (GmAGL1), was isolated from soybean flower. The transcript of GmAGL1 was expressed in flowers and pods of different stages in soybean and was highly expressed in carpels. GmAGL1 is a nucleus-localized transcription factor ...

متن کامل

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ - identity proteins ( flower development / domain swapping )

The Arabidopsis MADS domain proteins API, AP3, PI, andAG specify floral organ identity. All of these proteins contain a MADS domain required for DNA binding and dimerization; a region termed L (linker between MADS domain and K domain), which plays an important role in dimerization specificity; the K domain, named for its similarity to the coiled-coil domain of keratin; and a C-terminal region o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 2014